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Abstract 

 
The study of width parameters in graph theory and algebraic contexts has garnered significant attention. 

Among these, treewidth has proven to be a pivotal parameter. The concept of "Tangle," introduced by 

Robertson et al., is recognized as being dual to the width parameter known as "treewidth" in graphs 

(Robertson & Seymour, 1991). Meanwhile, the notion of a "Filter" is well-established in the fields of 

topology and algebra. 

In this concise paper, we propose a definition of Ultrafilters on graphs and demonstrate their equivalence to 

graph Tangles, thereby establishing a dual relationship with treewidth. Additionally, we explore the 

connection between these concepts and pathwidth. 

 

 
Keywords: Filter; ultrafilter; tangle; tree-decomposition; path-decomposition; tree-width; bramble. 

  

Short Research Article 

https://doi.org/10.9734/arjom/2025/v21i1886
https://www.sdiarticle5.com/review-history/130005


 
 

 

 
Fujita; Asian Res. J. Math., vol. 21, no. 1, pp. 98-114, 2025; Article no.ARJOM.130005 

 

 

 
99 

 

1 Introduction 
 

1.1 Graph width parameters 
 

A graph is a mathematical concept that represents various phenomena through a diagrammatic structure 

consisting of vertices (nodes) and edges (Diestel, 2024). A graph class refers to a specific category of graphs 

characterized by particular structural properties (Brandstädt, Le, & Spinrad, 1999). One of the concepts used to 

analyze the structural properties of graphs is graph parameters. Examples of such parameters include diameter, 

radius, and chromatic number (cf.(Fujita, 2024; Sasak, 2010)). In this paper, we focus on Graph Width 

Parameters. 

 

In recent years, there has been a significant increase in research interest in the study of width parameters within 

graph theory and algebraic frameworks (Bodlaender, 1993; Bodlaender, 1997; Fomin & Thilikos, 2008; Elm, 

2023; Bonato & Yang, 2013; Fomin & Thilikos, 2003; Kloks, 1994; Seymour & Thomas, 1993; Bodlaender, 

2005; Robertson & Seymour, 1991; Oum & Seymour, 2007; Fujita, 2024; Thilikos, 2000; Bodlaender & Koster, 

2010; Geelen, Gerards, Robertson, & Whittle, 2006; Fujita, 2024; Bodlaender et al., 1995; Bodlaender, 1992; 

Courcelle & Olariu, 2000; Robertson et al., 1994; DeVos et al., 2004; Bodlaender, 1998; Fujita & Smarandache, 

2025; Gottlob, Greco, & Scarcello, 2014; Fujita, 2023; Fujita & Smarandache, 2023; Fujita, 2023; Elbracht et 

al., 2022). Examples include treewidth (Bodlaender, 1993), pathwidth (Kinnersley, 1992; Barát, 2006), cutwidth 

(Korach & Solel, 1993), bandwidth (Chinn et al., 1982), Boolean width (Bui-Xuan et al., 2011), hypertree width 

(Gottlob et al., 2014), Superhypertree width (Fujita, 2025), and modular width Gajarský et al., Ordyniak, 2013). 

These width parameters are measures based on tree-like structures, commonly referred to as graph 

decompositions. Among these, treewidth is particularly notable, as it serves as a fundamental tool for analyzing 

the structural complexity of various mathematical objects, including graphs and matroids (see (Bienstock et al., 

1991; Lozin & Razgon, 2022; Bożyk et al., 2022; Castellví et al., 2022; Doumane, 2022; Robertson & Seymour, 

1986; Robertson & Seymour, 1984; Korach & Solel, 1993; Johnson et al., 2001; Seymour & Thomas, 1993; 

Safari, 2005)). These parameters have also been extensively studied from the perspective of graph algorithms 

(cf. (Al Etaiwi, 2014; Even, 2011)). Additionally, applications in networks and protein structures are also well-

known (Hliněný et al., 2008; Fujita, 2024). The definition of treewidth is provided below. 

 

Definition 1 (Bodlaender, 1993): Treewidth is a graph parameter that measures how close a graph is to being a 

tree. Formally, the treewidth of a graph G is the minimum width among all possible tree-decompositions of G. A 

tree-decomposition of a graph G = (V, E) is a pair (T, B) where T is a tree and B = {Bt | t ∈ V(T)} is a collection 

of subsets of V(G), called bags, satisfying the following conditions: 

 

1. For every edge (u, v) ∈ E(G), there exists a bag Bt such that {u, v} ⊆ Bt. 

2. 2. For every vertex v ∈ V(G), the set of all bags containing v forms a connected subtree of T. 

3. 3. The width of a tree-decomposition is max (|Bt| - 1) over all t ∈ V(T). 

 

Example 2: A path graph is a graph where each vertex is connected linearly to form a single path. For a path 

graph with n vertices, a tree-decomposition consists of bags containing consecutive vertices, such as {v_1, v_2}, 

{v_2, v_3}, ..., {v_{n-1}, v_n}. The width of this decomposition is 1, so the treewidth of a path graph is 1. 

 

1.2 Tangle 
 

The concept of "Tangle," as defined by Robertson et al., is known to be dual to the width parameter called 

"treewidth" in graphs (Robertson & Seymour, 1991). Concepts like Tangles are sometimes referred to as 

Obstructions. These serve as useful tools in graph algorithms, particularly when determining the value of width 

parameters for a given input graph. Therefore, research on Tangles, which are closely related to width 

parameters, is of great significance (cf. (Hliněný et al., 2008; Diestel & Oum, 2019)). 

 

1.3 Filter and ultrafilter 
 

The notion of a "Filter" is well-established within the realms of topology and algebra. Simply put, a filter can be 

interpreted as a collection of sets containing a specific element, and it serves as a useful tool for discussing 

convergence properties in mathematics. In the domain of Boolean algebra, maximal filters are referred to as 



 
 

 

 
Fujita; Asian Res. J. Math., vol. 21, no. 1, pp. 98-114, 2025; Article no.ARJOM.130005 

 

 

 
100 

 

“ultrafilters (Fujita, 2024)”. Due to their versatile nature, ultrafilters hold substantial and wide-ranging 

significance, finding applications in a multitude of fields including topology, algebra, logic, set theory, lattice 

theory, matroid theory, graph theory, combinatorics, measure theory, model theory, and functional analysis (as 

supported by references (Carnielli & Veloso, 1997; Leinster, 2012; Mijares, 2007; Schilhan, 2022; Cato, 2013; 

Booth, 1970; Comfort & Negrepontis, 2012; Jech, 1981; Zelenyuk, 2011; Hrbacek & Jech, 1999); Bell, 2011)). 

 

1.4 Our contribution 
 

Based on the above, while research on ultrafilters, tangles, and treewidth is undoubtedly important, the study of 

ultrafilters on graphs remains relatively unexplored. 

 

In this paper, we propose a definition of ultrafilters on graphs and demonstrate their equivalence to graph 

tangles. The concept of ultrafilters on graphs is defined as an analogous notion to ultrafilters on sets. 

 

Additionally, we examine the relationship between ultrafilters, pathwidth, and the graph concept known as 

bramble. We hope that these concepts will contribute to a deeper understanding of graph structures and foster 

advancements in the study of graph algorithms. 

 

2 Definitions and Notations in this Paper 
 

This section provides mathematical definitions of each concept. As the fundamental definitions used in this 

paper, the concepts of graphs, subgraphs, and related notions are concisely described below. For details on 

graph theory operations and further specifics, please refer to various lecture notes and books (e.g., (Diestel, 

2024)). 

 

Definition 3 (Diestel, 2024): A graph G is a mathematical structure composed of nodes (vertices) connected by 

edges, representing relationships or connections. V(G) represents the set of vertices (nodes) in a graph G, E(G) 

represents the set of edges in the same graph G, and G=(V,E) signifies that G is a graph defined by a pair of sets, 

V for vertices and E for edges. 

 

Definition 4 (Diestel, 2024): A subgraph is a subset of a graph consisting of selected vertices and edges. 

 

Remark 5: In this paper, we utilize the natural number k. Additionally, the graphs considered in this paper are 

simple, finite, and undirected graphs. 

 

2.1 Filters on boolean algebras 
 

We provide an explanation of Filters in Boolean Algebras. Boolean Algebras are mathematical structures used 

for operations, like AND, OR, NOT, commonly used in logic and computer science. 

 

The definition of a filter in a Boolean algebra (X,∪,∩) is given below. The complement of an filter in a Boolean 

algebra (X,∪,∩) is referred to as an ideal in a Boolean algebra (X,∪,∩) (Matejdes, 2024). 

 

Definition 6 (Matejdes, 2024; Fujita, 2024): In a Boolean algebra (X,∪,∩), a set family F ⊆ 2X satisfying the 

following conditions is called a filter on the carrier set X. 

 

(FB1) A, B ∈ F ⇒ A ∩ B ∈ F, 

(FB2) A ∈ F, A ⊆ B ⊆ X ⇒ B ∈ F, 

(FB3) ∅ is not belong to F. 

 

In a Boolean algebras (X,∪,∩), A maximal filter is called an ultrafilter and satisfies the following axiom (FB4): 

(FB4) ∀A ⊆ X, either A ∈ F or X / A ∈ F. 

 

As a supplementary note, a filter can also be considered in the context of a partially ordered set (poset). Below, 

we provide a simple example of a filter and an ultrafilter in a Boolean algebra. 
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Example 7: Consider the Boolean algebra (X, ∪, ∩) where X = {1, 2, 3, 4}. Define a set family F = { {1, 2}, {1, 

2, 3}, {1, 2, 3, 4} }. 

 

F satisfies the filter properties: 

 

- (FB1) Intersection: {1, 2} ∩ {1, 2, 3} = {1, 2} ∈ F. 

- (FB2) Superset closure: If A = {1, 2} ∈ F and {1, 2} ⊆ B = {1, 2, 3, 4}, then B ∈ F. 

- (FB3) ∅ ∉ F. 

 

Therefore, F is a filter on X. 

 

Example 8: Consider the same Boolean algebra (X, ∪, ∩) where X = {1, 2, 3, 4}. Define a set family F = { {1}, 

{1, 2}, {1, 2, 3}, {1, 2, 3, 4} }. 

 

F satisfies the ultrafilter axiom (FB4): 

- For any subset A ⊆ X, either A ∈ F or X \ A ∈ F. For instance: 

 

- A = {1}, so {1} ∈ F. 

- X \ A = {2, 3, 4}, so {2, 3, 4} ∉ F (as it is complementary to A). 

 

This property ensures that F is an ultrafilter. 

 

2.2 G-tangle on the graph 
 

We provide an explanation of G-Tangle on the graph. 

 

In the context of graph theory, a tangle in a graph G is a way to describe how the vertices can be separated into 

distinct groups based on certain conditions (Robertson & Seymour, 1991). Let us first define a "separation." 

 

Definition 9 (Robertson & Seymour, 1991): A separation of a graph G is a pair of subgraphs (A, B) that satisfy 

the conditions: 

 

- V(A) ∪ V(B) = V(G), where V(X) denotes the vertex set of X. 

- V(A) ∩ V(B) is non-empty but minimal, meaning there are no subsets of A and B that can further be called a 

separation. The order of a separation (A, B) is defined to be |V(A) ∩ V(B)|, the number of vertices that A and B 

share.  

 

Example 10: Consider the graph G with vertex set V(G) = {1, 2, 3, 4, 5} and edge set E(G) = {(1, 2), (2, 3), (3, 

4), (4, 5)}. Define the subgraphs A and B as follows: 

 

- A contains vertices {1, 2, 3} and edges {(1, 2), (2, 3)}. 

- B contains vertices {3, 4, 5} and edges {(3, 4), (4, 5)}. 

 

The pair (A, B) satisfies: 

 

- V(A) ∪ V(B) = {1, 2, 3, 4, 5} = V(G). 

- V(A) ∩ V(B) = {3}, which is non-empty and minimal. 

 

Thus, (A, B) is a separation of G with order |V(A) ∩ V(B)| = 1. 

 

The definition of a tangle on the graph is provided below. Tangles are well-known for their deep connection 

with tree-decompositions. 

 

Definition 11 (Robertson & Seymour, 1991): Let G be a graph. A G-tangle of order k is a family T of 

separations of G satisfying the following conditions. 

 

(T0) The order of all separations (A, B) ∈ T is less than k. 
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(T1) For all separations (A, B) of G of order less than k, either (A, B) ∈ T or (B, A) ∈ T . 

(T2) If (A1, B1),(A2, B2),(A3, B3) ∈ T then A1 ∪ A2 ∪ A3 ≠ G. 

(T3) V(A) ≠ V(G) for all (A, B) ∈ T 

 

In the field of graph width parameters, duality theorems play a pivotal role by establishing a connection between 

two seemingly distinct concepts: a width parameter and a combinatorial structure, such as brambles or tangles 

(Robertson & Seymour, 1991; Bienstock et al., 1991). A duality theorem is often expressed as a min-max 

relation, highlighting a fundamental balance between the "size" of specific graph decompositions and the 

"complexity" of certain structures that obstruct such decompositions. 

 

For reference, the general form of a duality theorem is provided. 

 

Definition 12 (cf.(Robertson & Seymour, 1991; Bienstock et al., 1991)): A duality theorem asserts that for a 

given graph G, a graph width parameter width(G) can be equivalently characterized by: 

 

1. The minimum value of the width over all valid decompositions of G.2. The maximum value of a measure 

associated with a certain obstruction or combinatorial structure (e.g., tangles or brambles) in G. 

2. Mathematically, it is expressed as: 

 

width(G) = min(decompositions) max(obstructions) {measure(obstruction)}. 

 

It is known that Tangle and Tree-width have the following duality relationship. In this paper, we consider about 

duality relationship like following theorem. 

 

Theorem 13 (Robertson & Seymour, 1991): If there exists a G-Tangle of order k - 1, then the tree-width is at 

least k. 

 

Proof: Please refer to (Robertson & Seymour, 1991) and related references. 

 

A path-decomposition is a specific type of tree-decomposition where the underlying tree structure is restricted to 

a path. Path-width has been the subject of numerous studies and holds similar significance in research due to its 

practical applications in the real world (ex. (Bodlaender & Kloks, 1996; Bodlaender et al., 1995; Robertson & 

Seymour, 1983; Kinnersley, 1992; Barát, 2006; Dujmović et al., 2002; Seymour, 2023)). The definition and an 

example are provided. 

 

Definition 14 (Heinrich, 1992): A path-decomposition of a graph G = (V, E) is a sequence of subsets of 

vertices (called bags), denoted as B1, B2, …, Bk, satisfying the following conditions: 

 

1. Vertex Coverage: Every vertex v ∈ V(G) appears in at least one bag, i.e., v ∈ Bi for some i. 

2. Edge Coverage: For every edge (u, v) ∈ E(G), there exists a bag Bi such that u, v ∈ Bi. 

3. Connectedness: If a vertex v appears in bags Bi and Bj, then v must also appear in all bags Bt for i ≦ t ≦ j. 

 

The width of a path-decomposition is defined as max (|Bi| - 1) over all i. The pathwidth of G is the minimum 

width among all possible path-decompositions of G. 

 

A Path-Tangle can be defined as an obstruction for a Path-Decomposition. The formal definition is provided 

below. 

 

Definition 15: Let G be a graph. A G-path-tangle of order k is a family T of separations of G satisfying the 

following conditions. 

 

(T0) The order of all separations (A, B) ∈ T is less than k. 

(T1) For all separations (A, B) of G of order less than k, either (A, B) ∈ T or (B, A) ∈ T . 

(LT2) If (A1, B1),(A2, B2), |V(A3)| = 1 then A1 ∪ A2 ∪ A3 ≠ G. 

(T3) V(A) ≠ V(G) for all (A, B) ∈ T 

 

From Theorem, which establishes the duality between tree-width and tangle, we can derive the following. 
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Theorem 16: Let G be a graph. If there exists a G-path tangle of order k - 1, then the path-width is at least k. 

 

Proof: Assume there exists a G -path-tangle T of order k - 1. 

 

Suppose the path-width of G is less than k. 

 

- This implies there exists a path-decomposition B1, B2, … , Bm of width less than k - 1. 

- Let Si = Bi ∩ Bi+1 for i = 1, 2, …, m-1. The size of each separator Si is less than k - 1. 

 

For each separator Si, define separations (Ai, Bi) where Ai contains vertices in bags up to Bi and Bi contains 

vertices in bags from Bi+1 onward. The order of these separations is less than k - 1. 

 

By the definition of a path-tangle, for each separation (A, B) of order less than k - 1, either (A, B) ∈ T or (B, A) ∈ 

T . However, the path-decomposition implies that some separations (A, B) ∉ T, violating (T1). Furthermore, the 

connectedness condition of path-decomposition ensures V(A) = V(G), violating (T3). 

 

Hence, the assumption that the path-width is less than k leads to a contradiction. Therefore, the path-width of G 

is at least k. This Proof is completed. 

 

Additionally, in reference (Bienstock et al., 1991; Erde, 2020), the theorems known as "path-width" and 

"blockage" have been established and proven. Likewise, several obstructions other than path-tangles, such as 

blockage, are also known. 

 

Theorem 17 (Bienstock et al., 1991): Let G be a graph. There is a blockage of order k if and only if the path-

width of G is at least k.  

 

Proof: Refer to (Bienstock et al., 1991) and other relevant references as needed. 

 

3 Ultrafilter on the Graph: Obstruction to Tree-decomposition 
 

We provide an explanation of G-Ultrafilter on the graph. 

 

The definition of a G-Ultrafilter on the graph is given below. We extend the definition from Boolean algebras to 

graphs. The complement of a graph ultrafilter is referred to as a maximal ideal on a graph. Note that the graphs 

considered in this paper are simple, finite, and undirected graphs. 

 

Definition 18: Let G be a graph. A G-Ultrafilter of order k is a family F of separations of G satisfying the 

following conditions. 

 

(F0) The order of all separations (A, B) ∈ F is less than k. 

(F1) For all separations (A, B) of G of order less than k, either (A, B) ∈ F or (B, A) ∈ F. 

(F2) (A1, B1) ∈ F, A1 ⊆ A2, (A2, B2) of G of order less than k⇒ (A2, B2) ∈ F, 

(F3) (A1, B1) ∈ F, (A2, B2) ∈ F, (A1 ∩ A2, B1 ∪ B2) of G of order less than k 

⇒ (A1 ∩ A2, B1∪ B2) ∈ F, 

(F4) If V(A) ＝ V(G), then (A, B) ∈ F. 

 

The relationship between ultrafilters on Boolean algebras and ultrafilters on graphs is examined in the following 

theorem. 

 

Theorem 19. A G-Ultrafilter of order k, as given by conditions (F0)-(F4), is precisely a maximal filter on the 

partially ordered set Σ₍ₖ₎(G). In other words, the axioms (F0)-(F4) ⇔ “Being an ultrafilter in a certain separation-

lattice for G.” 

 

Hence every G-Ultrafilter of order k can be viewed as an ultrafilter (a maximal filter) in the sense of Boolean 

algebras—but restricted to the collection of separations of order <k in G. 
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Proof. Before the proof, let us see why these axioms (F0)-(F4) indeed match the usual filter-and-ultrafilter 

setup: 
 

1.  In a Boolean algebra B, a (proper) filter F must: 
 

- Be closed under finite meets: If x, y ∈ F, then x ∧ y ∈ F. 

- Be upward‐closed: If x ∈ F and x ≤ y, then y ∈ F. 

- Omit the minimal element 0 (the empty element), to avoid triviality. 
 

2.  A filter F is an ultrafilter when, for every element x ∈ B, exactly one of x or ¬x (its complement) is in F. 
 

3.  Translating from “set algebra” to “separations”: 

- The partial order ≤ can be thought of as: (A₁,B₁) ≤ (A₂,B₂) if and only if A₁ ⊆ A₂ (and the edges/induced 

subgraphs align). 

- The “meet” operation ∧ on separations typically identifies with (A₁∩A₂, B₁∪B₂), ensuring that the vertex sets 

do not break the separation property. 

- The requirement that (A,B) or (B,A) be in F “but not both” parallels the usual x∈F or ¬x∈F, exclusively, 

from ultrafilters on a Boolean algebra. 

- The axiom (F4) ensures the filter is proper and not collapsed. In standard set‐based ultrafilters, being 

“proper” means ∅∉F and X∈F. The separation (A,B) with V(A)=V(G) is the direct analog of including the 

“whole set” in the ultrafilter. 

Hence, axioms (F0)-(F4) encode precisely “maximal filter-like choices among all separations of order <k.” 
 

We now give a detailed argument that any family F of separations satisfying (F0)-(F4) is exactly a maximal 

filter in the associated separation-poset (viewed as a Boolean algebra-like structure). Conversely, any ultrafilter 

in that separation-poset satisfies (F0)-(F4). 

1.  Closure under meets (Axiom (F3)): In a Boolean algebra, a filter requires: if x and y lie in the filter, then 

x ∧ y also lie in the filter. Translating to separations: 

- If (A₁,B₁) and (A₂,B₂) both lie in F, then we check whether (A₁∩A₂, B₁∪B₂) is indeed a separation of order <k. 

- By (F3), whenever that pair is a valid separation of order <k, it must also lie in F. 

- This matches “closure under meets.” 
 

2.  Upward‐closure (Axiom (F2)): In an ordinary filter, if x ∈ F and x ≤ y in the partial order, then y is also in 

F. Translating to separations: 

- A separation (A₁,B₁) is “below” (A₂,B₂) if A₁ ⊆ A₂ (and they maintain the separation structure). 

- By axiom (F2), if (A₁,B₁)∈F and A₁⊆A₂, then (A₂,B₂)∈F. 

- This matches “upward‐closure.” 
 

3.  Non-triviality (Axiom (F4)): In a standard filter on a set X, we require ∅∉F and also X∈F. The separation 

(A,B) with V(A)=V(G) (or equivalently (B,A) with V(B)=V(G)) plays the role of “the whole set.” Axiom 

(F4) forces such a “whole‐graph” separation to lie in F. Hence we avoid “degenerate” or “empty” 

membership. 
 

Therefore, (F2), (F3), and (F4) together precisely give us the usual filter axioms (plus properness) in the sense of 

a lattice or Boolean algebra structure, restricted to Σ₍ₖ₎(G). 

 

We must check that axiom (F1) forces F to be a maximal filter—no strictly larger filter F'⊃F can exist. In 

classical Boolean-algebra terms, an ultrafilter has the property: for every element x, exactly one of x or ¬x is in 

the ultrafilter. 

- In separations, “complement” translates to “flip”: ¬(A,B) ↔ (B,A). 

- Axiom (F1) says that, for any separation (A,B) of order <k, exactly one of (A,B) or (B,A) is in F. 

 

Suppose F were not maximal. Then there is a strictly larger filter F'⊃F. By definition of a filter, for each 

separation (A,B)∈Σ₍ₖ₎(G), you must include exactly one from the pair {(A,B), (B,A)}. But F' and F are both 

filters, so for every (A,B)∈Σ₍ₖ₎(G): 

- F contains exactly one of {(A,B),(B,A)}. 

- F' also contains exactly one of {(A,B),(B,A)}. 
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Since F'⊃F, there is at least one separation (C,D) with (C,D)∈F'∖F. But by (F1), F already contains exactly one 

from {(C,D),(D,C)}. If F contains (D,C), it must exclude (C,D). Then F' cannot include (C,D) without violating 

the “choose exactly one from each pair” rule (because a filter cannot contain both (C,D) and (D,C)). 

Contradiction. 

 

Hence no strictly larger filter F'⊃F is possible, so F is maximal among all filters in the separation poset Σ₍ₖ₎(G). 

By definition, that is precisely an ultrafilter in the sense of Boolean-like structures. 

 

It remains to see that if you have a maximal filter F⊆Σ₍ₖ₎(G) (with respect to the natural partial order and meet 

operation on separations of order <k), then it must satisfy the G‐Ultrafilter axioms. This proof is completed. 

 

Proving the Main Theorem of this paper, which establishes the equivalence between ultrafilters on graphs and 

Tangles. 

 

Theorem 20. Let G be a graph. T is a G-Tangle of separations of order k in graph iff F = {(A,B) | (B,A) ∈ T } is 

an G- Ultrafilter of separations of order k in graph. 

 

Proof. To prove this Theorem, we need to establish a bidirectional implication: that if T is a G-tangle of order k, 

then F defined by F = {(A,B) | (B,A) ∈ T} is a G-ultrafilter of order k, and vice versa. We will prove both 

directions separately. 

 

First, we consider about forward Direction. 

 

We show that F satisfies axiom (F0). Let (A, B) be any separation in F. Then by definition of F, we have (B, A) 

in T. Since T is a G-tangle of order k, we know that the order of (B, A) is less than k. Hence, the order of (A, B) 

is also less than k. Thus, F satisfies condition (F0). 

 

We show that F satisfies axiom (F1). Let (A, B) be any separation of G of order less than k. Then either (A, B) or 

(B, A) is in T. This means either (A, B) or (B, A) is in F, satisfying the condition (F1). 

 

We show that F satisfies (F2). To establish that F satisfies axiom (F2) , we need to show that if (A1, B1) belongs 

to F , A1 ⊆A2 , and (A2, B2) is a separation of G of order less than k , then (A2, B2) belongs to F. 

 

Given the set T = {(B, A) | (A, B) ∈ F} defines a G-tangle of order k, we know that (B1, A1) belongs to T. Now, 

since A1 ⊆ A2, we have B2 ⊆ B1. By the property (T2) of tangles, we can infer that (B2, A2) belongs to T, because 

otherwise B1 ∪ B2 would cover the whole graph, which contradicts axiom (T2). 

 

Hence, (B2, A2) belongs to T, which means (A2, B2) belongs to F, establishing that F satisfies condition (F2). 

 

We show that F satisfies (F3). Assume to the contrary that F does not satisfy (F3). This means that there exist 

separations (A1, B1)  and  (A2, B2) in F such that the separation (A1 ∩ A2, B1 ∪ B2) is not in F. 

 

If (A1 ∩ A2, B1 ∪ B2) is not in F , then, by the definition of F as F = {(A,B) | (B,A) ∈ T } , it follows that the 

separation (B1 ∪ B2, A1 ∩ A2) is not in T either.  

 

Remember that T is a G-tangle, so for every separation of order less than k, either one of its orientations is in T. 

Since (B1 ∪ B2, A1 ∩ A2) is not in T, the only possibility left is that its opposite orientation, (A1 ∩ A2, B1 ∪ B2), 

must be in T. This, however, contradicts our assumption.  

 

Furthermore, because (B1, A1) and (B2, A2)  are both in T, by axiom (T2), the union of any three separations from 

T should not cover the entire graph. Yet, if we take (B1, A1), (B2, A2), and  (B1 ∪ B2, A1 ∩ A2), their union covers 

the entire graph, G. This contradicts (T2) of the definition of a G-tangle. So axiom (F3) holds. Axiom (F4) 

obviously holds. 

 

Next, we consider about backward direction. 
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We show that T satisfies axiom (T0). For any separation (B, A) in T, we have (A, B) in F. By condition (F0), the 

order of (A, B) is less than k. Hence, the order of (B, A) is also less than k. Thus, T satisfies the condition (T0). 

 

We show that T satisfies axiom (T1). To prove this, let (A, B) be any separation of G of order less than k. By 

axiom (F1), we know that either (A, B) or (B, A) belongs to F. Hence, it follows that either (B, A) or (A, B) must 

be in T, verifying the condition (T1). 

 

We show that T satisfies (T2). Suppose we have (B1, A1), (B2, A2), (B3, A3) in T. We aim to prove that B1 ∪ B2 ∪ 
B3 ≠ G. By definition of T, we know (A1, B1), (A2, B2), (A3, B3) are in F.  

 

Now, if we assume that B1 ∪ B2 ∪ B3 = G, then it would imply that A1 ∩ A2 ∩ A3 = ∅, which contradicts (F3) as 

it would lead to a separation of order less than k not being in F. Hence, B1 ∪ B2 ∪ B3 ≠ G, proving axiom (T2). 

 

We show that T satisfies axiom (T3). To prove T satisfies axiom (T3), let's consider a separation (B, A) in T. It 

implies that (A, B) is in F. By condition (F4) of F, V(B) ≠ V(G) , confirming that T satisfies condition (T3) . 

 

This proof is completed. 

 

Theorem 21: Let G be a graph. If there exists a G-Ultrafilter of order k - 1, then the tree-width is at least k. 

 

Proof. This theorem clearly holds based on Theorem 20 and Theorem 13. 

 

4 Path Ultrafilter on the Graph: Obstruction to Path-decomposition 
 

By imposing additional constraints on filters on graphs, it becomes possible to establish a dual relationship with 

path-width. The definition for this is as follows. The complement of a graph path ultrafilter is referred to as a 

maximal path ideal on a graph. 

 

Definition 22: Let G be a graph. A G-Path Ultrafilter of order k is a family F of separations of G satisfying the 

following conditions. 

 

(F0) The order of all separations (A, B) ∈ F is less than k. 

(F1) For all separations (A, B) of G of order less than k, either (A, B) ∈ F or (B, A) ∈ F . 

(F2) (A1, B1) ∈ F, A1 ⊆ A2 , (A2, B2) of G of order less than k ⇒ (A2, B2) ∈ F, 

(F3) (A1, B1) ∈ F, |V (A2)| ＝ |V(G)| - 1, (A1 ∩ A2, B1 ∪ B2 ) of G of order less than k  

⇒ (A1 ∩ A2, B1 ∪ B2 ) ∈ F, 

(F4) If V(A) ＝ V(G), then (A, B) ∈ F. 

 

Theorem 23: Let G be a graph. T is a Path-Tangle of separations of order k in graph iff F = {(A,B) | (B,A) ∈ T } 

is an Path-Ultrafilter of separations of order k in graph. 

 

Proof: We first assume T is a G-Path-Tangle of order k and define: F := {(A,B) | (B,A) ∈ T}. 

We will verify that F satisfies the axioms (F0)–(F4). 

 

Axiom (F0) holds. Take any (A,B) ∈ F. By definition, (B,A) ∈ T. Since T is a path-tangle of order k, every 

separation in T has order <k (by (T0)). Hence (B,A) has order <k, implying (A,B) also has order <k. This proves 

(F0). 

 

Axiom (F1) holds. Let (X,Y) be any separation of G with order <k. By (T1), exactly one of (X,Y) or (Y,X) is in T. 

If (X,Y) ∈ T, then by definition of F, (Y,X) ∈ F. If (Y,X) ∈ T, then (X,Y) ∈ F. Hence exactly one of (X,Y) or (Y,X) 

is in F, matching axiom (F1). 

 

Axiom (F2) holds. Suppose (A₁,B₁) ∈ F and A₁ ⊆ A₂. Also, let (A₂,B₂) be another separation of order <k. We 

want to show (A₂,B₂) ∈ F. From (A₁,B₁) ∈ F, we get (B₁,A₁) ∈ T. Typically, in Tangle theory, “(B₁,A₁) being 

below (B₂,A₂)” translates to A₁ ⊆ A₂ ⇒ B₂ ⊆ B₁. Now, using the path-tangle property (especially (LT2)), one 

shows that (B₂,A₂) must lie in T; otherwise, if (B₂,A₂) ∉ T, then (A₂,B₂) ∈ T would contradict the “union of three 
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A-sides covers V(G)” prohibition or something analogous. Concretely, (T1) says one orientation is in T, and 

combining (B₁,A₁) with a possible (A₂,B₂) would violate (LT2). 

Hence (B₂,A₂) ∈ T. By definition of F, that implies (A₂,B₂) ∈ F. Thus (F2) is satisfied. 

 

Axiom (F3) holds. Let (A₁,B₁) ∈ F, let |V(A₂)| = |V(G)|−1, and assume (A₁ ∩ A₂, B₁ ∪ B₂) is a separation of order 

<k. We must show: (A₁ ∩ A₂, B₁ ∪ B₂) ∈ F. From (A₁,B₁) ∈ F, we have (B₁,A₁) ∈ T. Suppose for contradiction 

that (A₁ ∩ A₂, B₁ ∪ B₂) ∉ F. By definition, that means (B₁ ∪ B₂, A₁ ∩ A₂) ∉ T. However, (T1) says exactly one of 

(B₁ ∪ B₂, A₁ ∩ A₂) or its flip is in T. So if (B₁ ∪ B₂, A₁ ∩ A₂) ∉ T, then (A₁ ∩ A₂, B₁ ∪ B₂) ∈ T must hold. But 

combining (B₁,A₁) and (A₁ ∩ A₂, B₁ ∪ B₂) inside T, we can find a single-vertex separation to complete a triple 

that violates (LT2). Specifically, we can cover V(G) with the union of those A-sides plus one more single-vertex 

side, contradicting the path-tangle condition. Hence the assumption fails, so (A₁ ∩ A₂, B₁ ∪ B₂) ∈ F. That 

completes (F3). 
 

Axiom (F4) holds. Consider a separation (A,B) such that V(A) = V(G). We want (A,B) ∈ F. 

If V(A) = V(G), then V(B) = ∅. For T as a path-tangle, (T3) states that V(A) ≠ V(G) for all (A,B) ∈ T. Hence 

(B,A) cannot lie in T. By (T1) (or the general “exactly one orientation in T”), the only possibility left is (A,B) ∈ 

T. Consequently, by definition of F, (A,B) ∈ T ⇒ (A,B) ∈ F. So (F4) also holds. 
 

We have shown that F satisfies all axioms (F0)–(F4), hence it is a G-Path-Ultrafilter of order k. 

Now assume F is a G-Path-Ultrafilter of order k and define: T := {(B,A) | (A,B) ∈ F}. 

We verify that T satisfies (T0)–(LT2), (T3). 
 

Axiom (T0) holds. If (B,A) ∈ T, then (A,B) ∈ F. By (F0), (A,B) has order <k. Hence (B,A) also has order <k. 

Thus (T0) is satisfied. 
 

Axiom (T1) holds. Take any separation (X,Y) of order <k. By (F1), exactly one of (X,Y) or (Y,X) lies in F.  

If (X,Y) ∈ F, then (Y,X) ∈ T. If (Y,X) ∈ F, then (X,Y) ∈ T. Hence for every separation (X,Y) of order <k, exactly 

one orientation is in T. This is exactly (T1). 
 

Axiom (LT2) holds. Suppose (B₁,A₁) ∈ T, (B₂,A₂) ∈ T, and there is (A₃,B₃) with |V(A₃)| = 1. We must show: B₁ ∪ 

B₂ ∪ B₃ ≠ V(G). 

Otherwise, if B₁ ∪ B₂ ∪ B₃ = V(G), we look at the corresponding (A₁,B₁), (A₂,B₂), (A₃,B₃) in F. One can derive a 

contradiction via (F3) or (F1), because then some new separation of the form (A₁ ∩ A₂ ∩ A₃, B₁ ∪ B₂ ∪ B₃) (of 

order <k) must or must not belong to F, contradicting the “exactly one orientation” rule or the path-specific 

closure. Concretely, |A₁ ∩ A₂ ∩ A₃| = 0 might emerge if each Aᵢ is chosen to be large, and so on. Hence B₁ ∪ B₂ 

∪ B₃ ≠ V(G), fulfilling (LT2). 
 

Axiom (T3) holds. If (B,A) ∈ T, then (A,B) ∈ F. If we had V(B) = V(G), then V(A) = ∅. However, (F4) forces 

that “the orientation with V(A) = V(G) is in F.” That is, (B,A) ∈ F is impossible if V(B) = V(G). So we cannot 

have V(B) = V(G). Therefore, (B,A) ∈ T implies V(B) ≠ V(G). This proves (T3). 

Thus T satisfies (T0), (T1), (LT2), (T3). Therefore, T is indeed a G-Path-Tangle of order k. This proof is 

completed. 

 

Theorem 24: Let G be a graph. If there exists a Path-Ultrafilter of order k - 1, then the path-width is at least k. 

 

Proof. This theorem clearly holds based on Theorem 23 and Theorem 16. 

 

5 Bramble: Closely Related to Tree-decomposition 
 

Bramble is a concept closely related to graph-width parameters such as tree-decomposition, and like other 

concepts, it has been the subject of various research efforts (ex. (Diestel & Müller, 2018; Kreutzer & Tazari, 

2010; Birmelé et al., 2007; Grohe & Marx, 2009)).  

 

We are providing an explanation of G-bramble with reference to (Grohe & Marx, 2009). The definitions of 

Bramble and related concepts are provided as follows. 
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Definition 25 (cf. (Seymour & Thomas, 1993)) Consider a graph G, where k is a positive integer. Two 

subgraphs A and B touch if either their vertex sets have a non-empty intersection (V(A) ∩ V(B) ≠ ∅), or there 

exists an edge e ∈ E(G) that connects a vertex from A to a vertex from B. 

 

A set X ⊆ V(G) is said to "cover" a subgraph B ⊆ G if their intersection is non-empty (X ∩ V(B) ≠ ∅). X is 

considered to "cover" a family B of subgraphs of G if it covers all subgraphs B ∈ B. 

 

Definition 26 (cf. (Seymour & Thomas, 1993)): We define a G-bramble of G as a family B consisting of 

connected subgraphs of G in which any two subgraphs within the family touch. The size of the bramble B is 

denoted simply as |B|. The order of the bramble, denoted as the parameter k, is the smallest integer k such that 

there exists a set X with |X| = k that covers the entire family B. 

 

There is a relationship between G-Bramble and tree-width. From this perspective, a Bramble can also be 

regarded as an obstruction to tree-width. 

 

Theorem 27 (Seymour & Thomas, 1993): Let G be a graph. A graph G has a G-bramble of order k if and only 

if it has tree-width at least k – 1. 

 

Proof: Please refer to the necessary references such as (Seymour & Thomas, 1993). 

 

There is a relationship between G-Bramble and G-Ultrafilter. 

 

Theorem 28: Let G be a graph. T is a G-Ultrafilter of separations of order k in graph, then T is a G-Bramble of 

separations of order k in graph. 

 

Proof: Let T be a G-Ultrafilter of separations of order k in graph. To show T is a G-Bramble, we need to show: 

1)  Elements of T are connected subgraphs of G. 

2)  Any two subgraphs within the family T touch. 

 

1)  Elements of T are connected subgraphs of G: 

 

By the definition of a separation in a graph, each element of T consists of a pair of subgraphs (A, B). Both 

A and B are subgraphs of G and hence, elements of T are subgraphs of G. 

 

2)  Any two subgraphs within the family T touch: 

 

Let's take any two separations (A1, B1) and (A2, B2) from T. Given the nature of a G-Ultrafilter, either (A1, 

B1) or (B1, A1) belongs to T, and either (A2, B2) or (B2, A2) belongs to T. 

 

Based on the properties of the G-Ultrafilter, if A1 intersects with A2 or B2, or if B1 intersects with A2 or B2, then 

they touch. Using the axioms (F0) and (F1), it is clear that such an intersection will always exist, ensuring that 

the two separations touch. 
 

Thus, based on these points, T satisfies the requirements of a G-Bramble. Hence, if T is a G-Ultrafilter of 

separations of order k in a graph, then T is a G-Bramble of separations of order k in the graph. This completes 

the proof. 
 

6 Conclusion and Future Tasks  
 

This paper explores the relationship between ultrafilters and treewidth. Specifically, it examines the duality 

between ultrafilters and treewidth, demonstrating the validity of a min-max theorem in this context. 
 

Future research directions are also discussed. We aim to investigate the characteristics of ultrafilters on graphs 

across various graph classes. For instance, we foresee progress in studying ultrafilters on specialized graph 

classes such as fuzzy graphs (Sunitha & Mathew, 2013; Mathew et al., 2018; Fujita, 2024), neutrosophic graphs 

(Fujita, 2024; Fujita & Smarandache, 2024a), hypergraphs (Berge, 1984), superhypergraph (Fujita & 
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Smarandache, 2025; Fujita, 2025), regular graph (Wormald, 1999), median graph (McMorris et al., 1998), and 

plithogenic graphs (Fujita, 2024; Fujita & Smarandache, 2024b). 
 

In addition, we introduce the concept of ultraproducts on graphs and analyze their properties. Ultraproducts, a 

well-established mathematical construct, have been extensively studied in various domains (Ando & Haagerup, 

2014; Keisler, 2010). 
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